Decree of the Rector n. 96 of 19/02/2020

Competition for awarding 1 research grant at the University of Udine

DISCLAIMER:
The official and legally binding notice is in Italian only.
This document cannot be used for legal purposes and is only meant to provide information in English on the notice for applications (Decree of the Rector n. 96 of 19/02/2020).

Please refer to the official notice published on: web.uniud.it/ateneo/normativa/albo_ufficiale

- Decreto rettorale 19 febbraio 2020, n. 96 - Bando di concorso per l’attribuzione di 1 assegno per lo svolgimento di attività di ricerca presso l’Università degli Studi di Udine dal tema “Parallelizzazioni di codici di calcolo termofluidodinamici per flussi incomprimibili, comprimibili e rarefatti e loro applicazioni all’analisi di superfici di scambio termico microstrutturate” SSD: ING-IND/10 (responsabile scientifico, Giulio Croce).

Any changes and integrations will be made available on the above mentioned web page. Therefore, no personal written communication shall be provided to applicants about examinations dates, competition results.

GENERAL INFORMATION

RESEARCH GRANT PROJECT

1. Responsabile scientifico della ricerca / Principal investigator:

Nome e Cognome / Name and surname: Giulio Croce
Qualifica / Position: Professore associato
Dipartimento / Department: Politecnico Ingegneria e Architettura (DPIA)
Area MIUR / Research field: Area 09
Settore scientifico disciplinare / Scientific sector: ING-IND/10

2. Titolo dell’assegno di ricerca / Topic of research fellowship “assegno di ricerca”:

2.1 Testo in italiano:
Parallelizzazioni di codici di calcolo termofluidodinamici per flussi incomprimibili, comprimibili e rarefatti e loro applicazioni all’analisi di superfici di scambio termico microstrutturate.

2.2 Text in English:
Code parallelization for compressible, incompressible and rarefied flow applications to the analysis of microstructured heat transfer surfaces.

3. Obiettivi previsti e risultati attesi del programma di ricerca in cui si colloca l’attività dell’assegnista di ricerca / Foreseen objectives and results of the research programme performed by the research fellow “assegnista di ricerca”:

3.1 Testo in italiano:
L’attività è centrata sulla parallelizzazione dei codici sviluppati nel corso degli anni presso il gruppo di ricerca per la soluzione di problemi di termo fluidodinamica che coinvolgono flussi incomprimibili, comprimibili e rarefatti. In particolare, si considereranno tre solutori:

- Un codice agli elementi finite tridimensionale per flussi incomprimibili
- Un codice ai volumi finiti per la soluzioni di flussi comprimibili bi e tridimensionali
• In solutore ibrido delle equazioni di Boltzmann e Navier-Stokes, che combina il precedente solutore comprimibile con un solutore diretto delle equazioni di Boltzmann, per tener conto di regioni di flusso locali in cui la rarefazione giochi un ruolo decisivo.

Questi codici sono stati già usati in diversi progetti di ricerca nazionali ed internazionali, ma il continuo incremento della complessità delle applicazioni ne richiede una almeno parziale riscrittura tesa a migliorarne l'efficienza e a sfruttare appieno le risorse di calcolo multiprocessore e multicore disponibili nel Dipartimento. In particolare, mentre il solutore delle equazioni di Boltzmann è già stato parzialmente parallelizzato, sia per architetture basate sull'uso di CPU multicore, sia per un approccio basato sulle GPU di alto livello, i solutori nel continuo sono ancora largamente basati su un approccio sequenziale single-core. Inoltre, le applicazioni sviluppate nel corso degli anni per affrontare problematiche di frontiera, ed inevitabilmente anche di nicchia, ha portato ad una indesiderata proliferazione di versioni specifiche che rende molto onerosa l'evoluzione e manutenzione dei solutori.

L'attività prevede quindi un iniziale riconoscimento sullo stato dei sorgenti, che al momento, provenendo da autori ed evoluzioni temporali differenti, non seguono standard di programmazione comuni. Si condurrà una revisione tesa a uniformare approcci, regole di programmazione e schematizzazioni, per consentire un più efficiente processo di evoluzione degli stessi.

Il cuore dell'attività di programmazione verterà poi sulla scelta ed implementazione di un solutore algebroico parallelo per il Sistema di equazioni algebroico derivante dalla soluzione delle equazioni di Poisson nel solutore incomprimibile, e sulla completa parallelizzazione del solutore comprimibile. Quest'ultima parte considererà anche la possibile conversione per maglie non strutturate, considerando anche discretizzazioni spaziali di tipo upwind. Verrà seguito un approccio basato sull'uso delle librerie MPI.

Infine, si considereranno applicazioni dei codici così parallelizzati a problemi di interesse scientifico. In particolare, il solutore ibrido delle equazioni di Boltzmann e Navier Stokes verrà applicato a flussi di interesse ingegneristico, con particolare attenzione alla possibilità di migliorare le prestazioni di superfici di scambio termico grazie alla progettazione di superfici microstrutturate. Considerando sia flussi esterni intorno ad ostacoli (rappresentativi, ad esempio, di alettature a pin) e flussi interni, si cercheranno le caratteristiche topologiche più adatte per minimizzare perdite di carico e aumentare lo scambio termico.

3.2 Text in English:

The activity is focused on the parallelization of the in-house codes developed in the previous years for the simulation of uncompressible, continuum compressible and rarefied flow analysis. In particular, three solvers will be considered:

• a finite-element, 3D code for uncompressible flow analysis,
• a finite volume, 2D and 3D code for compressible flow analysis,
• a hybrid Navier-Stokes Boltzmann solver, matching the above mentioned compressible flow code with a direct solver for the full Boltzmann equation for locally highly rarefied gas flow.

These codes have been widely used in research projects funded at national and international level, but the increasing complexity of the application requires a general redesign aimed at increased efficiency and a better use of the state of the art parallel computational resources available at DPIA. In particular, while the Boltzmann solver has already been partially parallelized for both CPU and GPU based computational architectures, the continuum solver are still mostly single core based. Furthermore, the application to highly specific application niches lead, over the years, to a proliferation of code versions.

Thus, the activity will start with a general survey of the codes status. Coming from different sources and authors, these codes do not adhere at any standard programming approach or practice, making somewhat difficult their maintenance and evolution: as a first step, the research fellow will perform a general revision in order to homogenise the source codes, following stricter rules and guidelines, with the main aim of facilitating future developments and evolutions. This step will also include a rationalization of the compressible flow code versions, which currently include several pleonastic branches for small niche applications such as axisymmetric turbomachinery flow, shallow water modelling, 2D and 3D versions.

The core activity will then include the choice and implementation of a parallel solver for the main algebraic system arising from the Poisson equation solved in the incompressible, FEM code and the full parallelization of the compressible one. The latter activity will include both the parallelization of the current structured mesh approach and the possible conversion to an unstructured mesh topology. This will involve a thorough analysis of the current mathematical approach, taking into account the possibility to include upwind based discretizations. MPI-based approach will be adopted.

RESPONSABILITÀ

Responsabile dell’area: Sandra Salvador
Responsabile del procedimento: Sandra Salvador
Compilatore del procedimento: Angela Cocetta
The final outcome from the activity will be a set of updated, fully parallelized software for the simulation of complex flow problems, as well as a flexible platform useful as an efficient, state-of-the-art solver suite for future development and application. The hybrid code will be applied to the analysis of configuration of engineering and scientific interest. In particular, micro-structured surfaces will be considered, in an attempt to optimize the performances of macro-scale device in terms of both heat transfer enhancement and pressure loss reductions. External flow (representative, as an example, of pin-finned devices), as well as internal flow.

4. Struttura dell’Università di Udine presso la quale verrà sviluppata l’attività di ricerca / Department or other structure of the University of Udine where research activities will be carried out:

Dipartimento di Politecnico Ingegneria e Architettura (DPIA)

5. Durata dell’assegno di ricerca / Duration of research fellowship “assegno di ricerca”: (min 1 max 3 anni/years).

12 mesi/months

6. Importo lordo assegnista / Total grant net of deductions paid by financer:

€ 19,367,00

7. Finanziamento / Financed by:

Ateneo, Il Bando interno finanziamento assegni 2019;
Fondi Ricerca Libera prof. G. Croce

8. Requisiti richiesti per l’ammissione alla selezione / Minimum qualifications necessary:

- Possesso del titolo di Dottore di ricerca o titolo equivalente conseguito all’estero;
- Possesso di un curriculum scientifico professionale idoneo allo svolgimento dell’attività di ricerca contemplata.

- Research doctorate or equivalent qualification obtained abroad;
- Professional Scientific curriculum suitable for the research activity above mentioned

9. Procedura selettiva / Competition procedure:

Valutazione per titoli/Evaluation of titles

10. Commissione giudicatrice / Adjudicating commission:

<table>
<thead>
<tr>
<th>Nome e Cognome</th>
<th>Qualifica</th>
<th>SSD</th>
<th>Università</th>
</tr>
</thead>
<tbody>
<tr>
<td>Membri Effettivi/Permanent members</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Giulio Croce</td>
<td>PA</td>
<td>ING-IND/10</td>
<td>Università Studi Udine</td>
</tr>
<tr>
<td>Carlo Nonino</td>
<td>PO</td>
<td>ING-IND/10</td>
<td>Università Studi Udine</td>
</tr>
<tr>
<td>Paola D’Agaro</td>
<td>PA</td>
<td>ING-IND/11</td>
<td>Università Studi Udine</td>
</tr>
<tr>
<td>Membro Supplente/ Temporary members</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Stefano Savino</td>
<td>PA</td>
<td>ING-IND/10</td>
<td>Università Studi Udine</td>
</tr>
</tbody>
</table>
APPLICATIONS AND DEADLINE

11. Application for admission to the competition

Entries to competition begin on 27 February 2020 at 02:00 p.m. (Italian time) and end on March 17, 2020 at 02:00 p.m. (Italian time).

The application to participate in the selection must be completed, under penalty of exclusion, using the online procedure at the address https://pica.cineca.it/

The online procedure involves two stages:
Stage I – Registration
Stage II – Filling out the online application.

At the end of Stage II, the applicant must print out the application form, sign it in the manner (manual signature, with attached identity document, or digital signature) described in the online procedure, under penalty of exclusion from the selection.

Documents, qualifications and publications, as listed in art. 4 of the Notice of competition (Decreto rettorale 27 gennaio 2020, n. 21), must be attached to the online application in electronic format (.pdf). The size cannot be larger than 30 MB.

The application to participate in the selection process is automatically sent to the University of Udine with the final closure of the online procedure.

The university administration:
- does not assume any responsibility in case it is impossible to read the documentation submitted in electronic format due to damaged files;
- does not accept or take into consideration titles or documents received in paper format or in a manner different from that set out in this article;

The administration takes no responsibility for the loss of any communications resulting from an inaccurate indication of the residence address of the applicant, or from the lack or tardy communication of their change, nor from any possible mail delivery or postal error not due to any fault of the Administration.

Applicants are advised not to wait until the last days before the deadline of this call. The University assumes no liability for any malfunctions due to technical problems and/or overloading of the communication line and/or application systems.

Personal data collected, also with IT tools, are aimed at managing the procedure of the competition and the subsequent stipulation and management of the contract. The University of Udine is the “Data Controller”. At any time, you can request access, corrections and, according to the University institutional purposes, the cancellation and limitation of the processing or oppose the processing of your data. You can always submit a complaint to the Italian Authority for data protection. The complete information is available on the University of Udine website in the section “privacy” accessible from the home page www.uniud.it
Direct link: https://www.uniud.it/it/pagine-speciali/materiale-gdpr/informative/bando-concorso-dottorato

12. Head of procedure

The officer in charge of the proceedings is Dr. Sandra Salvador, Head of Area Servizi per la Ricerca of the University of Udine.

The responsible Office of the University of Udine is the Area Servizi per la Ricerca – Ufficio Formazione per la Ricerca, via Mantica n. 31 - 33100 Udine (tel +39 0432 556390 Fax +39 0432 556299).
Office hours: Monday to Thursday from 11:00 am to 1:00 pm (Italian time); Monday from 03:00 pm to 05:00 pm (Italian time).